2004 BBLR MD Results

- 2002/03 MDs & new BBLRs
- preliminary results of 3 parasitic MDs in 2004
- proposal for additional MD

for the BBLR team

many people contributing

J.Albertone, G.Arduini, S.Baird, F.Billard, C.Benvenuti, G.Burtin, F.Caspers, A.Cherif, G.Ferioli, C.Fischer, J.-M.Geisser, J.-J.Gras, A.Grudiev, R.Jones, J.Koopman, J.-P.Koutchouk, L.Jensen, Y.L'Aminot, S.Mathot, S.Myers, J.-L.Pasquet, R.Perret, J.-P.Riunaud, F.Roncarolo, M.Royer, H.Schmickler, J.Wenninger, ..., CERN; Y. Papaphilippou, ESRF; B.Erdelyi, T.Sen, V.Shiltsev, FNAL

motivation

long-range collisions cause a large diffusion and proton losses effect of SPS BBLR wire resembles LHC long-range collisions hence we can study LHC long-range collisions and their compensation in the SPS

early in 2002 a single 1-wire BBLR was installed in the SPS

2002/2003 MDs

- the first BBLR allowed us to model the effect of SPS long-range collisions in the SPS and to benchmark the simulations
- 6 MDs were performed in 2002 and 2003
- we observed lifetime reduction, beam losses, and emittance shrinkage, tune shift, orbit distortion, enhanced decoherence; we scanned both the beam-wire distance and the wire current,...
- results were presented to the APC on 19.10.2003 and published in two reports: CERN-AB-2004011-ABP and LHC-Project-Report-777

for 2004 two novel 3-wire BBLRs were built; one of these is installed in LSS5 close to the 1st BBLR; the 2nd new device is being refurbished, after a vacuum leak, for installation in LSS2

F. Zimmermann, 2004 BBLR MD Results, APC 15.10.2004

MDs in 2004

29./30.07.04 compensation of BBLR1 by BBLR2, mismatched emittance to 4-6 μ m, scan compensator current and position, tune scans around SPS & LHC tunes test of crossing schemes HH, VV, 26.08.04 and "pseudo-VH", tune scan around LHC tunes 02.09.04 compensation of BBLR1 by BBLR2, "scaled" with original emittance at smaller distance

diagnostics signals

for all experiments we have recorded BCT, PMT loss signals, tunes, emittance & wire scans at different times in the cycle, orbits, 1000-turn data....

1.4 Gbytes on disk – analysis in progress at CERN (J.-P.K., F.R., F.Z.), FNAL (T.S.), and ESRF (Y.P.)

we use new BDI ROSALI* beta version for BCT and PMT analysis (J.P. Koutchouk)

*Rapid Online Software Algorithm Implementation

measured BBLR compensation efficiency vs. working point - scan around SPS tunes (proposal V. Shiltsev)

first we optimized QX, lifetime with compensation was ~2x lifetime with 1 BBLR, and ~1/2 lifetime w/o BBLR

29.07.04

then at optimum QX, we scanned QY, lifetime increased more a few times (note starting point value different!)

measured BBLR compensation efficiency vs. working point - scan around LHC tunes

Twiss parameters at the two BBLRs

	BBLR1	BBLR2	
β_{x}	47.66 m	54.14 m	
α_x	-1.39	-1.53	
μ_x	0.6045	0.611	
β _y	50.83 m	44.69 m	
α_{v}	1.46	1.32	
μ_v	0.5215 (2π)	0.5285 (2π)	

 $\Delta \varphi_{x}$ = 2.3°, $\Delta \varphi_{y}$ =2.5° (as in LHC)

simulated diffusion rates (WSDIFF) vs. amplitude for different tunes, assuming model Twiss parameters

measured intensity loss on flat top

Measured Intensity Loss (current polarities reversed)

F. Zimmermann, 2004 BBLR MD Results, APC 15.10.2004

-

LHC

BBLR

measured BBLR compensation efficiency vs. current & position

LHC

BBLR

optimum position differs by 1 mm from expectation, tolerance <5% (total distance ~20 mm)

position sensitivity: prediction & measurement

BBSIM: No compensation beyond ~3mm Measurement: Compensation lost beyond ~2.5mm from optimum *consistent!*

BBLR

LHC

wire scans - taken at various times in the cycle

BBLR

LHC

distribution is fitted as sum of 2 Gaussians representing core & tail

29.07.04

systematic differences between IN & OUT scans are corrected for; BWS519 and 414 agree within +/-2%

BBLR1&2 (compensation)

LHC

BBLR

simulation (BBSIM) of x&y emittance evolution with time - horizontal emittance grows, vertical shrinks

<u>assessment after 1st compensation MD:</u> parameters not under control or whose control is critical, e.g., beam emittance (sudden jump from 6 to 2.5 μ m!?), aperture limits, BBLR ramp

new strategy for 2nd compensating MD: BBLR switched on before injection Q-meter kick near end of cycle → monitor tune, and tail measurement incoming emittance not blown up, adjust beam-wire distance & current → increased effective aperture

Nominal conditions: ϵ_{N} =3.75 10⁻⁶ m; I_{W} = 267 A; d_{y} =9.5 σ =21.42 mm (BBLR1), 21.10 mm (BBLR2)

in MD: ε_N =1.72x10⁻⁶ µm, I_w =122.5 A, d_w =14.5 mm

'scaled' experiment: - emittance not increased, distance reduced by scaling, BBLR ramped prior to injection

F. Zimmermann, 2004 BBLR MD Results, APC 15.10.2004

BBLR

LHC

02.09.04 'scaled' experiment: measured beam lifetime

lifetime	Total current	Loss at injection 0 to 100 ms	Loss during plateau: 100 to 3450 ms	Loss after kick: 3450 to 3670 ms	Scenario
4111±966	5309±167	170±9	8.3±1.8	312±15	2 BBLR's (compensation)
2131±325	5911±114	234±8	10.0±2.9	282±9	1 BBLR (excitation)
3666±494	5319±91	168±5	10.3±3.1	383±12	No BBLR

J.-P. Koutchouk

interpretations & observations for "scaled" compensation

- 36 min. correct estimate of uncompensated LHC lifetime? or effect enhanced by SPS tune ripple?
- lifetime improved with compensation stabilizing effect of residual nonlinearity?
- beam intensity varied by 10%, drift in the PS, change of closed orbit at the dump?
- losses after kick reduced by presence of single BBLR,
 tails are partly cut by the BBLR
 interesting extension: repeat for different kick amplitudes;
 with 2 BBLRs kicks intermediate losses —> imperfect

compensation

how could we model the XY crossing without the LSS2 BBLR?

idea: cancel linear tune shift between the two BBLRs

 $\Delta Q_{x,y} = \pm \frac{r_p I_w l_w}{2\pi \gamma ec} \beta_{x,y} \frac{d_y^2 - d_x^2}{\left(d_x^2 + d_y^2\right)^2}$

(where we would have had independent orbit control)

to achieve tune shift cancellation in both planes we must have equal β_x/β_y ratio at both BBLRs (only approximately fullfilled)

we compromised between different constraints so at to achieve equal beam-wire distances, small tune shifts,

Emitt_t:CTime {Gate==1}

BBLR

LHC

on the other hand: between 0.5 and 3 s: horizontal core emittance grows from ~3 to ~4 μm

probing the LHC crossing scheme: raw lifetime data

y tune scan

F. Zimmermann, 2004 BBLR MD Results, APC 15.10.2004

26.08.04

probing the LHC crossing scheme: mean & rms τ 26.08.04

interpretations & observations of crossing study

- we found best lifetime for XX crossing, followed by YY-1 crossing
- 3rd best lifetime for pseudo "XY" crossing
- YY-2 lifetime worst; this could be due to vertical aperture reduction by y bump at the BBLR
- lifetime less sensitive because beam-wire distance larger than in other BBLR studies (x wire far out)

several studies still ongoing

emittances & profiles (F. Roncarolo, T. Sen) 1000-turn data (Y.Papaphilippou) PMT, lifetime & losses (J.-P. Koutchouk, F.Z.) simulations with FNAL BBSIM code (T. Sen) more simulations with WSDIFF (F.Z.)

example of turn-by-turn data

2mm kicks in both planes, both BBLRs excited Y. Papaphilippou

indications of coupling, 3rd and 4th order resonances

F. Zimmermann, 2004 BBLR MD Results, APC 15.10.2004

BBLF

LHC

proposal for additional MD

- results from end of last MD promising (better control of beam parameters, improved stability, optimized procedure, 'static BBLRs', precise BCT)
- new technique for measuring tail populations by kicking to various amplitudes after wire excitation; we would like to do systematic measurements
- tune scan not yet done for these stable conditions
- could create a closer 'XY crossing' by rotating BBLR1 (1 hr access, ~3 hr pump down)

BBLR2-45 or

bean

thank you for your attention!

back-up slides

simulated LHC diffusive aperture for nominal & reduced crossing angle vs. Q_y

