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Abstract

We determine action dependent damping coefficients for electron coolers
with cylindrical and hollow beams and action dependent diffusion coeffi-
cients from the interaction with a pellet target and a simple model of intra-
beam scattering. We use these coefficients to numerically solve the time-
dependent Fokker-Planck equation and present simulations of the tran-
sient cooling down. An efficient integrator makes it possible to simulate
long times (hours) very efficiently and quickly. Moreover we determine a
maximum acceptable limit of the cooling time to provide stable operation.

1 Introduction

The beam sizes and particle distributions in storage rings that are equipped with
electron coolers and internal targets and operate at high beam intensities are
determined by the competition of the friction force due to the electron cooler and
the diffusion due to the target and intrabeam scattering (IBS). This is particularly
important for cooler rings that will operate at luminosities in the 1032/cm2s range
with 1011 particles per beam and targets with thickness in the 1015/cm2 range.
These extreme conditions warrant a study of stability issues. The longitudinal
dynamics was already investigated in Ref. [1] and [2] and in the latter report
limits for stable operation in the longitudinal plane were determined. In this
report we focus on the transverse direction and will discuss the profile of the
distribution and the temporal evolution towards a quasi-equilibrium. Since all
the processes involved act on a slow time scale long with respect to the revolution
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frequency we can adopt a description that employs the phase-averaged Fokker-
Planck equation that only depends on the transverse action variable J. In one
dimension, the Fokker-Planck equation, we assume horizontal, is given by [3]

∂ψ(J)

∂t
=

∂

∂J

(
2αJψ(J) + DJ

∂ψ

∂J

)
(1)

where ψ(J) is the sought distribution function. α is the damping coefficient and
D is the diffusion coefficient. Both parameters potentially depend on the action
variable J. The equilibrium distribution function is determined by setting the left
hand side to zero. In the absence of a limiting aperture and for constant α and D
we find the equilibrium distribution from Eq. 1 to be ψ(J) = exp(−J/ε)/ε with
ε = D/2α.

In real accelerators these simplifying assumptions are not given. There is
always a limiting aperture in the form of the vacuum pipe causing losses, rendering
the concept of a real equilibrium useless. Moreover, the damping coefficient
α and diffusion coefficient D are in fact action-dependent. In particular the
damping coefficient is strongly action-dependent, because particles with a large
betatron action J often cross the electron cooler with a large angle and it is
well-known that the cooling force strongly depends on the relative angle between
electron and ion beam [4]. Therefore particles with large betatron action are less
efficiently damped, and one can envision a scenario where cooling is insufficient
to counteract the diffusion, leading to increased transport of particles into the
tails and to increased losses. A second – often ignored – effect comes from the
finite size of the electron beam. Particles with betatron amplitudes larger than
the electron beam radius miss the electron beam on some turns, reducing the
effective cooling rate further. A hollow beam is sometimes considered to match
the ion beam size to the spacing between pellets to reduce the modulation of
the luminosity [6]. It is also proposed [5] to counteract ultra-cold beam cores
that lead to instabilities and increased electron capture. It will not cool the core
at all and the tails at a reduced rate as will be discussed below. The diffusion
coefficient from a gas or pellet target is also action dependent, because the target
typically has a circular cross-section in the plane described by a vertical normal
vector, i.e. looking from above. This causes the target to be thicker in the center
leading to increased diffusion at small betatron action amplitudes. Moreover,
large amplitude particles occasionally miss the target. Intrabeam scattering will
aggravate the diffusion into the tails beyond that caused by the target. The
interplay of these action dependent effects will determine the tranverse beam
profile and the losses.

The detailed shape of the transverse distribution is of relevance for the nuclear
physics experiments utilizing the interaction of the beam with the target, because
an increased beam core size reduces the overlap between the beam and the target,
thereby reducing the luminosity. Increased beam tail population and subsequent
beam loss leads to worse background conditions that lead to reduced efficiencies
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of the detector.
In order to describe the complex scenario of action dependent damping and

diffusion together with a finite aperture we will calculate the respective coeffi-
cients for realistic targets and transverse electron cooler current profiles. Then we
construct an efficient numerical algorithm to integrate the Fokker-Planck equa-
tion over very long time scales of hours which reveals the evolution of the dis-
tribution function. We use the simulation program to explore the ability of the
cooler to counteract the diffusion caused by the target.

2 Cooler Overlap

We start by investigating the friction force due to the electron cooler where the
damping constant α is given in terms of the cooling time τ by α = 1/τ. The
action dependence of the cooling force can be described by

α =
1

τ
=

1

τ0

1

(1 + J/J0)3/2
(2)

with

α0 =
1

τ0
=

4πZ2rprecneηcLc

Aγ2

(
c

veff

)3

(3)

where rp and re are protons and electrons classical radius, respectively and ne

is the electron density, Lc is the Coulomb log, veff is the effective velocity that
represents the sum of all imperfections of the electron cooler, such as magnetic
field misalignment or power supply ripple and is assumed to be on the order of
3 × 104 m/s. For J0 we then have 4 10−8 mrad. The action dependent reduction
factor in Eq. 2 represents the reduction in cooling when the relative velocity of
electrons and ions is large due to the large Courant-Snyder invariant J of the ion.
In the remainder of this report we use α0 as a parameterization of the ’strength’
of the cooler.

The effect of finite transverse size of the electron beam, however, is not yet
taken into account. An ion with large betatron amplitude r =

√
2βcJ obviously

spends a fraction of its time inside the electron beam and another fraction outside.
In order to determine the distribution function we consider the distribution of a
particle performing betatron oscillations. The projection of the ellipses in phase
space onto the horizontal axis is obtained after integrating over the x′ variable
which, after normalization, results in the distribution function

ψ(x) =
1

π

1√
r2 − x2

. (4)

The probability of being in the electron beam is given by the overlap of the
distribution given by Eq. 4 and the radial distribution function of the electron
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Figure 1: The reduction factor R(r) as a function of the betatron amplitude
r =

√
2βcJ for a solid cylindrical electron beam (solid line) and for a hollow

beam (dashed line).

beam. For a solid cylindrical electron beam with radius a this reduction factor
R(r) is given by the following overlap integral

R(r) = 2
∫ a

0

1

π

1√
r2 − x2

dx =

{
1 if r < a
(2/π) arcsin(a/r) if r > a

(5)

We observe that the reduction factor is unity if the amplitude of the ion beam r
is inside the electron beam, but reduced outside. The solid line in Fig. 1 shows
the dependence of the reduction factor R(r) on the amplitude r.

For an extreme hollow electron beam with a parabolic annular ring of radius
b and width 2a = b/10 the reduction factor Rh(r) is given by

Rh(r) = 2
∫ b+a

b−a

1

π

1√
r2 − x2

1

N0

[
1 − (x− b)2

a2

]
dx (6)

with the normalization constant N0 = 8πab/3. The integrals can be solved by
elementary means using integrals number 164 to 166 in ref. [7] where we need
to distinguish three cases: first r < b − a, second b − a < r < b + a, and third
b + a < r. We display the resulting reduction factor by the dashed line in Fig. 1.
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We observe that cooling is absent inside the hollow beam and that the reduction
factor decays stronger at large amplitudes compared with the solid cylindrical
beam. Already here it is obvious that a hollow electron beam cools considerably
less than a cylindrical beam with the same electron current.

3 Target Overlap

The beam particles experience multiple transverse small-angle scattering in the
target which causes transverse diffusion. The RMS transverse kick angle in a
target of thickness ρ̄ is given by [10]

θrms =
13.6 MeV

β2E

√
ρ̄

X0

(7)

where X0 = 3.77 1025/cm2 is the radiation length [10] of solid hydrogen and E is
the energy of the ions. For ρ̄ we assume the average thickness of 4 1015/cm2. The
diffusion constant due to the average target thickness D̄ is then given by

D̄ =
βtf0

2
θ2

rms (8)

where βt = 1 m is the beta function at the target and f0 is the revolution fre-
quency. The target has a circular distribution in the x−z direction, characterized
by the thickness ρ(x) which is given by

ρ(x) =
πρ̄

2R

√
R2 − x2 . (9)

The target thickness thus depends on the horizontal position x and correspond-
ingly the diffusion constant will depend on the transverse position x as well. Note
that the peak density ρ̂ is related to the average density ρ̄ by

ρ̂ =
π

2
ρ̄ . (10)

In order to calculate the average over the betatron phases we have to average
the target distribution ρ(x) over the transverse distribution given by Eq. 4. We
have to distinguish cases where the particle performs small oscillations and is
completely embedded inside the target or that it performs large oscillations and
sometimes misses the target. The relative geometry of the target and the beam
performing small betatron oscillations is shown in dashes in Fig. 2. The case
where the oscillation amplitude r is larger than the target radius R is shown as
the dot-dashed line. The target is shown as the solid semi-circle in Fig. 2.

In order to calculate the effective target overlap we have to average the target
distribution over the particle distribution and need to evaluate the following
integral

Ir<R =
1

2R

∫ r

−r

√
R2 − x2

√
r2 − x2

dx (11)

5



-2 -1 0 1 2
r/R

Figure 2: Betatron oscillations with amplitude less (dashed line) and larger (dot-
dashed line) than the target with radius R, here shown as the solid circle.

which describes the overlap of the betatron oscillations and the target if the
betatron oscillation amplitude is less than the target radius, as shown by the
dashed distribution in Fig. 2. The integral is easily solved with the substitution
x = r sinφ leading to

Ir<R =
1

R

∫ π/2

0

√
R2 − r2 sin2 φ dφ = E(r/R) (12)

where E(k) is the complete elliptic integral of the second kind [8]. Note that this
is only valid if the betatron oscillation is completely immersed in the target with
r < R.

If the betatron oscillations have an amplitude r larger than the target radius
R the upper limit of the integral extends to an angle φ̂ given by R = r sin φ̂ and
we obtain

Ir>R =
∫ arcsin(R/r)

0

√
1 − (r2/R2) sin2 φdφ

= E(arcsin(R/r), r/R) (13)

where E(φ, k) now is the incomplete elliptic integral of the second kind [8].
In order to visualize the effect of the circular target on the beam that performs

betatron oscillations we plot the effective target thickness in units of the average
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Figure 3: The effective target thickness as a function of the betatron oscillation
amplitude r =

√
2Jβ. We use Eq. 12 for r/R ≤ 1 and Eq. 13 for r/R ≥ 1.

target thickness in Fig. 3 as a function of the betatron amplitude r =
√

2Jβt.
Numerical routines to evaluate the elliptic integrals needed in the preparation of
Fig. 3 can be found in reference [9]. Note that the effective target thickness is
actually enhanced for particles with very small amplitude r, as can be expected
from Eq. 10. If the betatron amplitude is equal to the target width, the target
thickness that the ions experience is the average density ρ̄ and for amplitudes
larger than the target radius R the effective target thickness is reduced, because
the ions pass through the target only a fraction of their turns.

4 Discretization of the Fokker-Planck Equation

The one-dimensional Fokker-Planck equation describing the dynamics of the be-
tatron phase-averaged distribution function in the action variable J is given by

∂ψ(J)

∂t
=

∂

∂J

(
2α(J)Jψ(J) + D(J)J

∂ψ

∂J

)

=
∂

∂J

(
2ᾱψ(J) + D̄

∂ψ

∂J

)
(14)
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with the action dependent inverse damping time or damping coefficient α(J) and
diffusion coefficient D(J). In order to facilitate further manipulations we have
introduced the abbreviations ᾱ = Jα(J) and D̄ = JD(J).

In case that we have constant α and D we can easily show that Eq. 14 is
solved by the distribution

ψc(J) =
1

ε
e−J/ε (15)

with the emittance ε = D/2α. We can prove that ε is really the emittance by
calculating the average of J over the distribution function ψc

< J >=
∫ ∞

0
Jψc(J)dJ = ε . (16)

This example will serve as a test to debug the numerical methods developed
below.

Furthermore the distribution in action space can be related to that in real
space by the integral transformation

φ(x) =
1

π

∫ ∞

0

ψ(J)√
2βJ − x2

dJ (17)

which is easily understood by observing that the integral is the weighted average
of the distribution in action space ψ with the probability distribution Eq. 2 of
a single particle with betatron amplitude r =

√
2βJ. For the distribution ψc(J)

given by Eq. 15 the integral in Eq. 17 can be easily solved with the substitution
s =

√
2βJ − x2. This leads to

φ(x) =
1√

2πεβ
exp

[
− x2

2εβ

]
(18)

which describes a centered Gaussian with RMS width
√
εβ, as expected.

In order to find the distribution function ψ(J) that solves the Fokker-Planck
equation Eq. 14 with action dependent damping and diffusion coefficients we will
discretize the Fokker-Planck equation on a grid in action space with grid size ∆x
and provide an algorithm to calculate the distribution function after a time step
∆t. The action in bin j is thus given by Jj = (j−1)∆x. To simplify the notation
we introduce the quantity un

j which corresponds to the distribution function ψ(Jj)
at time step n. The simplest integrator is given by the forward-time step method
and results in the following difference equation

un+1
j − un

j

∆t
=

[
ᾱj+1u

n
j+1 − ᾱju

n
j

∆x
+

ᾱju
n
j − ᾱj−1u

n
j−1

∆x

]

+
1

∆x

[
D̄j+1/2

un
j+1 − un

j

∆x
− D̄j−1/2

un
j − un

j−1

∆x

]

=
ᾱj+1u

n
j+1 − ᾱj−1u

n
j−1

∆x
(19)

+
D̄j+1/2(u

n
j+1 − un

j ) − D̄j−1/2(u
n
j − un

j−1)

∆x2
.
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where we introduced the diffusion term D̄j+1/2 = (D̄j+1 + D̄j)/2. It turns out
that solving Eq. 19 for un+1

j in a straight-forward way is unstable [9] for large
time steps ∆t. A method to avoid this calamity is based on a trick called the
Crank-Nicholson scheme which suggests to substitute the right-hand-side which
depends on time step n by the average of that term at time step n and n + 1.
This trick makes the behavior stable even for large time steps ∆t, albeit at the
expense of having to deal with an implicit system of linear equations, because the
sought functions un+1

j at time step n + 1 now appear on both the left hand side
and the right hand side of the equivalent of equation 19. The equation modified
by the Crank-Nicholson method now reads

un+1
j − un

j =
∆t

2

[
ᾱj+1u

n
j+1 − ᾱj−1u

n
j−1 + ᾱj+1u

n+1
j+1 − ᾱj−1u

n+1
j−1

∆x

+
D̄j+1/2(u

n
j+1 − un

j ) − D̄j−1/2(u
n
j − un

j−1)

∆x2
(20)

+
D̄j+1/2(u

n+1
j+1 − un+1

j ) − D̄j−1/2(u
n+1
j − un+1

j−1 )

∆x2

]
.

We now introduce scaled variables

α̃ =
∆t

2∆x
ᾱ, D̃ =

∆t

2∆x2
D̄ (21)

to facilitate the writing and rewrite Eq. 20 to collect all terms at time step n+ 1
on the left hand side

(1 + D̃j+1/2 + D̃j−1/2)u
n+1
j + (α̃j−1 + D̃j−1/2)u

n+1
j−1 − (α̃j+1 + D̃j+1/2)u

n+1
j+1 (22)

= (1 − D̃j+1/2 − D̃j−1/2)u
n
j − (α̃j−1 − D̃j−1/2)u

n
j−1 + (α̃j+1 + D̃j+1/2)u

n
j+1 .

Inspection of Eq. 22 reveals that we have to solve a tridiagonal linear system
of equations, which is easily accomplished using the subroutine tridag from [9].
We note in passing that solving a tridiagonal system is proportional to the size
N of the system, rather than N3 as it would be for a straight matrix inversion.
We thus arrive at a very fast and robust calculation of a single time step. The
detailed algorithm is given as follows:

1. First we assume that α(J) and D(J) are given or are already determined
using the discussions in the first few sections of this report. We then need
to calculate α̃j and D̃j on a grid in action space with spacing ∆x such that
we have Jj = (j − 1)∆x.

α̃j =
∆t

2∆x
Jjα(Jj) = (j − 1)

∆t

2
α(Jj)

D̃j =
∆t

2∆x2
JjD(Jj) = (j − 1)

∆t

2∆x
D(Jj) (23)
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2. Second we need to prepare the vectors ,a,,b,,c representing the lower, central,
and upper diagonal band in the equations 22 that need to be solved to find
the distribution function at time step n + 1

aj = α̃j−1 − 1

2
(D̃j−1 + D̃j) for j = 2, . . . , N

bj = 1 +
1

2
(2D̃j + D̃j−1 + D̃j+1) for j = 1, 2, . . . , N (24)

cj = −α̃j+1 − 1

2
(D̃j + D̃j+1) for j = 1, . . . , N − 1

3. In the third step we need to prepare the vectors ,d,,e, ,f that represent the
lower, central, and upper diagonal band in the right hand matrix in Eq. 22

dj = −α̃j−1 +
1

2
(D̃j−1 + D̃j) for j = 2, . . . , N

ej = 1 − 1

2
(2D̃j + D̃j−1 + D̃j+1) for j = 1, 2, . . . , N (25)

fj = α̃j+1 +
1

2
(D̃j + D̃j+1) for j = 1, . . . , N − 1

4. In the next, fourth step we need to calculate the right hand side term rj of
Eq. 22 by multiplying the coefficients from Eq. 25 with the distribution un

j

at time step n
rj = eju

n
j + dju

n
j−1 + fju

n
j+1 (26)

where we assume that un
0 and un

N+1 are zero. This will also ascertain that
losses at the aperture are treated correctly.

5. Substitute the vectors ,a,,b,,c, and ,r into the routine tridag from ref. [9] to
solve for the distribution function coefficients un+1

j in the next time step
and display them.

6. Iterate item 4) and 5) to simulate the time-dependence of the system.

7. Iterating for a long time will drive the system to equilibrium. the time scale
on which that happens depends of course on the cooling time.

It turns out that the algorithm is very stable and that very long time steps
can be used. We simulated the dynamics of a system with constant damping
time of 1000 s and diffusion over one damping time, namely 1000 s. The initial
distribution is chosen to have 10 times the emittance of the equilibrium beam.
We then simulate the process by iterating 10×100 s, 100×10 s and 1000×1 s but
found no visual difference in the distributions when plotting them on the same
graph. Closer inspection reveals that the difference between the three curves is
less than 10−5 where the 1000 × 1 s and the 100 × 10 s distributions are very
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close. Comparing the simulated distributions after 10 damping times to the
analytically calculated exponential equilibrium distribution shows differences on
the same order of magnitude. We conclude that the algorithm works very well,
even for large time steps.

5 Intrabeam Scattering

Intrabeam scattering describes the emittance growth due to Rutherford scatter-
ing events among the ions within the ion beam itself. In a denser beam, the
probability of such events is larger. In this sense it can be described by an ad-
ditional diffusion term with an emittance dependent magnitude. In ref. [1] it is
shown that this diffusion term for the horizontal plane can be written as

Dibs ≈ 1

2

〈η2
x

β̄x

〉 Λ‖
ε3/2

(27)

where the longitudinal diffusion term is given by

Λ‖ =

√
πNcriLc

4γ3β3C
√
β̄

. (28)

and β̄ is the average beta function, C is the circumference, ri the classical ion
radius, Lc the coulomb radius and N the number of ions. For numerical values we
follow Table 2 of Ref. [1]. Note that this method only gives an average diffusion
for all particles in the ion beam independent of their betatron amplitude, whereas
in reality one would expect a larger diffusion rate in the core where the density
and the collision probability is high.

In the simulation program we included intrabeam scattering in the simple
semi-self-consistent form described in the previous paragraph by calculating the
RMS emittance after each time step and using it to calculate new diffusion con-
stants D̃(Jj) and updating the arrays ,a, . . . , ,f in Eq. 24 and 25 before the subse-
quent iteration.

6 Simulations

In order to simulate the transverse beam dynamics in the HESR under realistic
conditions we have chosen the grid in action space to have 20 000 grid loca-
tions with a grid spacing of 2.5 10−9 m-rad. This allows to investigate small
emittances below 10−8 m-rad and also losses due to the limited vacuum cham-
ber radius in the detector r =

√
2βtJmax = 0.01 m where we assume βt = 1 m

and Jmax = 5 10−5 mrad. The beam kinetic energy T in the simulation is T =
4000 MeV. The cooler is located at a location with βc = 100 m beta function and
the electron beam has a radius of rc = 5 mm which corresponds to the action

11
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Figure 4: The distributions in action space over a period of 4000 s with 200 s
between profiles for α0 = 0.01/s.

Jr = r2
c/2βc = 1.25 10−7 mrad. For the transverse effective velocity veff we as-

sume veff = 3 104 m/s. This results in the action variable J0 = 4 10−8 mrad which
describes the dependence of the cooling time on the emittance in Eq. 2. As initial
distribution we always choose a Gaussian with emittance ε = 10−7 mrad. The
target has a width of ±1 mm with an average density ρ̄ = 4 1015 /cm2 which
results in an average diffusion constant of D̄ = 2.3 10−10 m/s.

In the first simulation we use a damping decrement of α0 = 0.01 s which cor-
responds to a small-amplitude damping time of τ0 = 100 s and use an integration
time of 20 for a total simulation time of 4000 s, a little over one hour. Such a
run takes less than a minute of CPU time on a reasonably modern PC. In Fig. 4
we display the evolution of the distribution in action space ψ(J) on a logarithmic
scale as a function of J for 20 intervals with 200 s inbetween, i.e. plotted after ev-
ery 10 consecutive iterations. The horizontal axis is restricted to J < 2 10−6 mrad
rather than the maximum Jmax used in the simulations in order to improve the
visibility of relevant features of the distributions. We see that the initial Gaus-
sian distribution is cooled down to in the center while simultaneously developing
tails at larger action values to the right. Note that the equilibrium emittance for
this situation were ε0 = D/2α = 1.15 10−8 mrad if cooling and diffusion operated
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Figure 5: Distributions after 4000 s for α0 = 0.003, 0.01, 0.02, 0.03/s.

homogeneously and independent of J. Here, however, their action dependence
causes tails to grow. Note that the simulation runs for at least 13 damping times
and still the equilibrium is not reached.

To obtain an impression how the final profiles after 4000 s look like in real
space we use Eq. 17 and display the final profiles in Fig. 5 for α0 = 0.003, 0.01,
0.02, 0.03/s corresponding to small-amplitude cooling times between 33 s and
333 s. The slight raggedness of the curves is a result of the numerical integration
in Eq. 17 when converting the distribution function in action variables to the pro-
jection in real space. We observe a narrow core of the distribution and tails that
progressively become more pronounced as the damping decrement is decreased.
It appears that there is a distinct change between α0 = 0.01 and α0 = 0.02 where
a small change in the damping decrement changes the magnitude of the tails by
a big amount.

In order to investigate this qualitative change further we display the emittance
that is calculated using Eq. 16 as a function of time and show the result in Fig. 6.
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Figure 8: The luminosity loss rate after 4000 s as a function of the damping
decrement α0. The left curve is the loss rate for the solid cylindrical electron beam
and the thick dashed line is a linear fit that intersects the x−axis at α0 = 0.017.
The curve labeled ’hollow’ is the loss rate for a hollow beam and the corresponding
fit which intersects the x−axis at α0 = 0.053.

We observe that the emittance for α0 = 0.03 and α0 = 0.02 decreases as a
function of time and approaches a finite equilibrium value whereas for smaller
α0 = 0.003 and 0.01 the emittance continues to grow after 4000 s. In Fig. 7 we
show the corresponding time-evolution of the relative luminosity λ = L/L0 =∫
ψ(J)I(J)dJ, as a function of time. Here I is the function depicted in Fig. 3 and

L0 is the average luminosity corresponding to all beam particles experiencing a
target of thickness ρ̄. Note that for strongly cooled beams the value approaches
the peak value between average and peak luminosity π/2 as shown in Eq. 10.
The explanation for this is that most of the beam is located in the center of the
circular target distribution and therefore experiences the peak target thickness.
In the simulation we also record the total beam current as the integral of the
distribution, but found that it only changed by less than 10−4 in all simulations
discussed above. We therefore did not loose beam at the aperture and the loss
of luminosity is actually a consequence of the reduced target overlap and the
correspondingly increased sampling of the target where it is less thick or missing
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Figure 9: The distributions in action space over a period of 4000 s with 200 s
between profiles for α0 = 0.01/s when cooling with a hollow electron beam.

it altogether.
We now investigate the qualitative change from damping to undamped behav-

ior by plotting the time-derivative of the relative luminosity dλ/dt after 4000 s as
a function of the damping decrement α0 in Fig. 8. We use the luminosity rather
than the emittance, because the determination of the emittance as a RMS quan-
tity is biased by strong tails and the luminosity is, after all, the quantity that
is most relevant for the experiments. We observe that dλ/dt is close to zero for
large α0 down to α0 ≈ 0.017 where dλ/dt abruptly starts to acquire significant
non-zero values towards smaller values of α0. We determine the cross-over value
by the intersection of a linear fit indicated by the thick dashed line in Fig. 8 with
the x-axis. The abrupt variation indicates a qualitative change in the behavior of
the distribution, resembling a phase transition. This indicates that a cooler for
the conditions stated above must at least provide cooling times below approxi-
mately 60 seconds in order to guarantee stable operation. In order to ensure that
the observed threshold is not an artefact of a time range that is too small we
repeated the calculation of the threshold with a ten-fold increased time range to
40000 s (half a day in real time) and found the same threshold.

We now turn to the investigation of hollow electron beams which are intro-
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Figure 10: Distributions after 4000 s for α0 = 0.01, 0.03, 0.05, 0.1/s when cooling
with a hollow electron beam.

duced in order to avoid excessive cooling of the core which leads to increased
coherent instabilities such as self-bunching and also reduces losses due to elec-
tronic recombination, even though the latter is of no concern in an anti-proton
accelerator. In the simulation the hollow beam is implemented by using the re-
duction factor Rh(r) of the cooling for hollow electron beam in Eq. 6 instead of
R(r) for solid round electron beams in Eq. 5.

We start the investigation of the hollow beam by using the same damping
decrement α0 = 0.01/s which led to Fig. 4 and show the corresponding time
evolution of the profiles in Fig. 9. There we observe that the tails are growing
more rapidly compared to Fig. 4. This is not surprising, because we saw in Fig. 1
that the reduction factor for hollow electron beam Rr which is shown as dashed
line in Fig. 1 lies below that one for solid electron beam R which is shown by
the solid line in Fig. 1. Obviously even large amplitude ions spend less time in
the hollow electron beam compared to a scenario with a solid electron beam. In
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Figure 11: The relative luminosity as a function of time when cooling with a
hollow electron beam for different values of α0.

Fig. 9 we also observe that the hollow beam has the desired property to achieve
a flat distribution near the origin, where a fraction of the ion beam is inside the
hollow electron beam and experiences no cooling force. This is also clearly visible
in Fig. 10 where we display the profiles after 4000 s for α0 = 0.01, 0.03, 0.05, and
0.1/s. For the larger values the beam is well-contained, but for values below 0.1
pronounced tails appear. This plot should be compared to Fig. 5 where large
tails only appear for values of α0 below 0.02/s.

We proceed by observing the relative luminosity as a function of time and
display it for α0 being varied between 0.1 and 0.01/s in Fig. 11. We observe that
the luminosity loss rate at 4000 s is only flat for α0 = 0.1/s. Towards the right in
Fig. 8 we plot the relative luminosity loss rate for the hollow beam in the same
way we did for the solid electron beam. Making a linear fit to the curve, we
find that it intersects the x−axis at α0 ≈ 0.053, about three times the threshold
value for solid electron beam. We conclude that a hollow electron beam shows
considerably reduced capability to contain large amplitude particles. This will
likely lead to increased background rates that will disturb the experiments.

Finally, we investigate the influence of IBS on the temporal evolution of the
distributions and the luminosity. Since IBS is important mostly in high intensity
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Figure 12: The profile after 4000 s with IBS (dashed line) and without IBS (solid
line) with α0 = 0.03/s.
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Figure 13: The relative luminosity as a function of time with IBS (dashed line)
and without IBS (solid line). Note the suppressed zero of the vertical axis.
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and very narrow beams, we can focus on the case with solid electron beams and
strong cooling with α0 = 0.03/s. We assume that there are 1011 particles in
the HESR ring and in this case the IBS diffusion constant Dibs at emittance
ε0 = 10−8 mrad is found to be D̂ibs = 2.2 10−10 m/s if we use the values from
Table 2 in Ref. [1]. The diffusion constant for other emittances are found from
scaling D̂ibs with (ε0/ε)

3/2.
In Fig. 12 we compare the profile after 4000 s with IBS taken into account to

that without IBS which is the same as the curve labeled 0.03 in Fig. 5. We find
that the influence of IBS is rather limited, which we attribute to the relatively
high energy used in the simulations. The weak effect of IBS is also visible in
the evolution of the relative luminosity. We compare the case with IBS to that
without in Fig. 13 and find a very moderate increase of the emittance after
4000 s, on the order of a percent. The emittances after 4000 s calculated by
Eq. 16 differ by about 30% which shows that the tails play a dominant role in
the determination of the RMS emittance, but play only a moderate role for the
luminosity.

7 Conclusions

We calculated the action dependent damping coefficients of electron coolers for
both solid and hollow electron beams. Moreover we determined the action de-
pendent diffusion coefficients for a target that resembles a pellet target. The
damping and diffusion constants are then used as input for the phase averaged
Fokker-Planck equation to calculate the time evolution of the distribution func-
tion in action variables. The Fokker-Planck equation is solved using a fast and
robust Crank-Nicholson solver. IBS is included in the model in a simple way
by recomputing the IBS-diffusion constant periodically during a simulation run.
The choice of simulating the distribution in action variables J allows to explore
the small-scale variations of the distribution function below the 10−8 mrad scale
as well as taking the aperture limit which is responsible for losses into account.
Therefore both the core of the distribution which determines the luminosity and
the tails, which determine background, are faithfully accounted for.

The resulting program was used to determine the limiting cooling time re-
quired to provide stable operation which is documented in the transition to non-
zero-values of the relative luminosity loss rate in Fig. 8. This is the limit when the
cooler becomes insufficient to contain the beam. Furthermore, we investigated
how a hollow beam electron cooler performed and found that it cools especially
large amplitude ions considerably less and much stronger coolers are required to
contain the beam tails as well as a cooler with solid electron beam. The effect of
IBS for the scenario investigated was found to be rather small.

The simulation program is rather fast. Simulating an hour of real time takes
considerably less than a minute due to the fact that large integration time steps
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can be taken because the Crank-Nicholson algorithm is numerically very stable.
The speed allows to make extensive parameter scans in a reasonable time, which is
deferred to later reports. In this report we have not utilized the capabilities of the
code to investigate losses and potential background issues, which is also planned
for the future. The code is only one-dimensional, focusing on the horizontal
dimensions and extending to both transverse dimensions is desirable.

This work is supported by INTAS grant 03-54-5584 for the collaboration on
Advanced Beam Dynamics and by the European sixth framework program, con-
tract 515873 - DIRACsecondary-Beams.
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