A Luminosity Leveling Method for LHC using an Early Separation Scheme

G. Sterbini, J.-P. Koutchouk

Accelerator Technology Department MSC-MA

April 2, 2007

G. Sterbini, J.-P. Koutchouk A Luminosity Leveling Method for LHC

・ロト (周) (E) (E) (E) (E)

Outline

Introduction and Concept

- The luminosity leveling need
- Using the early separation scheme for leveling
- The luminosity model
- 2 The Luminosity Leveling Insertion
 - The hardware layout considered
 - The dynamic range of the θ_c
- 3 Scenarios, Performance and Side effects
 - Scenarios ad performance
 - The integrated magnetic field request
 - Possible side effects

◎ ▶ ▲ 三 ▶ ▲ 三 ▶ 三 三 ● ○ ○ ○

The luminosity leveling need Using the early separation scheme for leveling The luminosity model

A LHC Luminosity Upgrade perspective.

Courtesy of W. Scandale and F. Zimmermann [1, "Two scenarios for the LHC Luminosity Upgrade"]

The luminosity leveling need Using the early separation scheme for leveling The luminosity model

・ロト (周) (E) (E) (E) (E)

WHY to level the luminosity?

Since...

"Experiments prefer more constant luminosity, less pile up at the start of run, higher luminosity at end."

[1, "Two scenarios for the LHC Luminosity Upgrade"]

and from the machine perspective, there is the energy deposition issue: 1.8 kW of debris at nominal luminosity.

... it is already proposed to level the luminosity...

- squeezing β^*
- varying the bunch length.
- [1, "Two scenarios for the LHC Luminosity Upgrade"]

The luminosity leveling need Using the early separation scheme for leveling The luminosity model

・ロト (周) (E) (E) (E) (E)

HOW to level the luminosity?

Here we proposed ...

• to vary the θ_c for leveling the luminosity using the Early Separation Scheme.

[2, "An Early Beam Separation Scheme for the LHC Luminosity Upgrade"]

It should be a very **clean** and very **flexible** control system.

- NO chromaticity correction variation
- NO sextupoles feed-down
- NO closed orbit variation around the machine.

But...

We need to install dipoles in the detector.

The luminosity leveling need Using the early separation scheme for leveling The luminosity model

Why varying the θ_c ...

$$L(\theta_{c}) = \frac{f_{rev} n_b N_b^2}{4\pi \sigma^{*2}} F(\theta_{c}) \quad \text{where} \quad F(\theta_{c}) \approx \frac{1}{\sqrt{1 + \left(\frac{\theta_{c} \sigma_{z}}{2\sigma^{*}}\right)^2}}$$

G. Sterbini, J.-P. Koutchouk A Luminosity Leveling Method for LHC

The luminosity leveling need Using the early separation scheme for leveling The luminosity model

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

The model of luminosity we used.

We implemented the following three processes

• the protons burning

$$\dot{N}_b(t) = -rac{\sigma \ n_{exp}}{n_b} L(t)$$

• the intra beam scattering [3, "Handbook of Accelerator Physics and Engineering"]

$$\dot{\epsilon}(t) = \frac{1}{\tau_{IBS}} \frac{N_b(t)}{N_{IBS}} \epsilon(t)$$

• the rest gas scattering [3, "Handbook of Accelerator Physics and Engineering"].

$$\dot{\epsilon}(t) = \frac{1}{\tau_{IBS}} \frac{N_b(t)}{N_{IBS}} \epsilon(t)$$

The luminosity leveling need Using the early separation scheme for leveling The luminosity model

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

The model of luminosity we used.

We implemented the following three processes

• the protons burning

$$\dot{N}_b(t) = -rac{\sigma \ n_{exp}}{n_b}L(t)$$

• the intra beam scattering [3, "Handbook of Accelerator Physics and Engineering"]

$$\dot{\epsilon}(t) = rac{1}{ au_{IBS}} rac{N_b(t)}{N_{IBS}} \epsilon(t)$$

• the rest gas scattering [3, "Handbook of Accelerator Physics and Engineering"].

$$\dot{\epsilon}(t) = \frac{1}{\tau_{IBS}} \frac{N_b(t)}{N_{IBS}} \epsilon(t)$$

The luminosity leveling need Using the early separation scheme for leveling The luminosity model

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

The model of luminosity we used.

We implemented the following three processes

• the protons burning

$$\dot{N}_b(t) = -rac{\sigma \ n_{exp}}{n_b}L(t)$$

• the intra beam scattering [3, "Handbook of Accelerator Physics and Engineering"]

$$\dot{\epsilon}(t) = rac{1}{ au_{IBS}} rac{N_b(t)}{N_{IBS}} \epsilon(t)$$

• the rest gas scattering [3, "Handbook of Accelerator Physics and Engineering"].

$$\dot{\epsilon}(t) = rac{1}{ au_{IBS}} rac{N_b(t)}{N_{IBS}} \epsilon(t)$$

The luminosity leveling need Using the early separation scheme for leveling The luminosity model

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

The model of luminosity we used.

We implemented the following three processes

• the protons burning

$$\dot{N}_b(t) = -rac{\sigma \ n_{exp}}{n_b}L(t)$$

• the intra beam scattering [3, "Handbook of Accelerator Physics and Engineering"]

$$\dot{\epsilon}(t) = rac{1}{ au_{IBS}} rac{N_b(t)}{N_{IBS}} \epsilon(t)$$

• the rest gas scattering [3, "Handbook of Accelerator Physics and Engineering"].

$$\dot{\epsilon}(t) = rac{1}{ au_{IBS}} rac{N_b(t)}{N_{IBS}} \epsilon(t)$$

The hardware layout considered The dynamic range of the θ_c

- θ₁ is the kick provided by the dipole at the position l₁ from the IP
- θ_2 is the kick provided by the orbit corrector at the position l_2 from the IP

A simple geometrical approach...

$$\theta_1 = \operatorname{atan}\left(\frac{l_2 \tan(\frac{\theta_{tripl}}{2}) - l_1 \tan(\frac{\theta_c}{2})}{l_2 - l_1}\right) - \frac{\theta_c}{2}$$
$$\theta_2 = \frac{\theta_{tripl}}{2} - \frac{\theta_c}{2} - \theta_1$$

The hardware layout considered The dynamic range of the θ_c

- θ₁ is the kick provided by the dipole at the position l₁ from the IP
- θ_2 is the kick provided by the orbit corrector at the position l_2 from the IP

A simple geometrical approach...

$$\theta_1 = \operatorname{atan}\left(\frac{l_2 \tan(\frac{\theta_{tripl}}{2}) - l_1 \tan(\frac{\theta_c}{2})}{l_2 - l_1}\right) - \frac{\theta_c}{2}$$
$$\theta_2 = \frac{\theta_{tripl}}{2} - \frac{\theta_c}{2} - \theta_1$$

The hardware layout considered The dynamic range of the θ_c

The dynamic range of the θ_c

Lower limit...

- encounters at reduced distance
- position of the dipoles

Upper limit...

- synchro-betatron coupling (to be investigated)
- strength of dipoles

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The hardware layout considered The dynamic range of the θ_c

The dynamic range of the θ_c

Lower limit...

- encounters at reduced distance
- position of the dipoles

Upper limit...

- synchro-betatron coupling (to be investigated)
- strength of dipoles

・ロト (周) (E) (E) (E) (E)

Scenarios ad performance The integrated magnetic field request Possible side effects

The instantaneous luminosity.

G. Sterbini, J.-P. Koutchouk A Luminosity Leveling Method for LHC

1= 990

코 > 포

Scenarios ad performance The integrated magnetic field request Possible side effects

The integrated luminosity.

G. Sterbini, J.-P. Koutchouk A Luminosity Leveling Method for LHC

э

ELE DQC

Scenarios ad performance The integrated magnetic field request Possible side effects

General consideration

The leveling has a "moderate analytical cost" in term of integrated luminosity.

		Peak L [10^{34} cm $^{-2}$ s $^{-1}$]	Integrated L [fb ⁻¹]
Nominal scenario		1.01	86.37
$\beta^{*} = 0.15 \text{ m}$	no D0	3.74	257.37
$eta^*=$ 0.15 m	D0, no leveling		
$eta^*=$ 0.15 m	D0 and leveling		

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Scenarios ad performance The integrated magnetic field request Possible side effects

General consideration

The leveling has a "moderate analytical cost" in term of integrated luminosity.

		Peak L [10 ³⁴ cm ⁻² s ⁻¹]	Integrated L [fb ⁻¹]
Nominal scenario		1.01	86.37
$\beta^{*} = 0.15 \text{ m}$	no D0	3.74	257.37
$\beta^* = 0.15 \text{ m}$	D0, no leveling	6.20	369.65
$\beta^* = 0.15 \text{ m}$	D0 and leveling	3.75	340.70

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Scenarios ad performance The integrated magnetic field request Possible side effects

The crossing angle.

G. Sterbini, J.-P. Koutchouk A Luminosity Leveling Method for LHC

Scenarios ad performance The integrated magnetic field request Possible side effects

The geometrical loss factor.

G. Sterbini, J.-P. Koutchouk A Luminosity Leveling Method for LHC

ELE DQC

Scenarios ad performance The integrated magnetic field request Possible side effects

The beam current.

G. Sterbini, J.-P. Koutchouk A Luminosity Leveling Method for LHC

= 990

코 > 포

Scenarios ad performance The integrated magnetic field request Possible side effects

The dipole working condition.

G. Sterbini, J.-P. Koutchouk A Luminosity Leveling Method for LHC

ELE DQC

Scenarios ad performance The integrated magnetic field request Possible side effects

The orbit corrector working condition.

ELE DQC

Scenarios ad performance The integrated magnetic field request Possible side effects

Possible side effects.

We focus on

- the distance between the beams
- the longitudinal size of the luminous region

$$rac{1}{\sigma_{lum}} pprox \sqrt{rac{2}{\sigma_z^2} + rac{ heta_c^2}{2 \ \sigma^{*2}}}$$

[1, "Two scenarios for the LHC Luminosity Upgrade"]

• the tune shift due to head-on collisions

$$\xi = \frac{N_b r_p}{4\pi\epsilon_n} F$$

[4, "LHC Luminosity and Energy Upgrade"].

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Scenarios ad performance The integrated magnetic field request Possible side effects

Distance between the beams

G. Sterbini, J.-P. Koutchouk A Luminosity Leveling Method for LHC

Scenarios ad performance The integrated magnetic field request Possible side effects

The longitudinal size of the luminous region.

G. Sterbini, J.-P. Koutchouk A Luminosity Leveling Method for LHC

표 🕨 🚊

Scenarios ad performance The integrated magnetic field request Possible side effects

ELE DQC

The tune shift due to head-on collisions.

• We proposed a method for luminosity leveling using the θ_c fully compatible with the Early Separation Scheme (and/or Crab Cavities).

Pros

- Clean to implement
- With flexibility.

Cons

- Dipoles in the detectors
- BB effect to understand better.

・ロト (周) (E) (E) (E) (E)

References

- F. Zimmermann and W. Scandale, *"Two scenarios for the LHC Luminosity Upgrade"*, PAF/POFPA meeting, 13 February 2007, CERN.
- J.-P. Koutchouk and G. Sterbini, *"An Early Beam Separation Scheme for the LHC Luminosity Upgrade"*, EPAC06 Proceedings, Edinburgh.
- A.W. Chao and M. Tigner, "Handbook of Accelerator Physics and Engineering", World Scientific Publishing Co. Pte. Ltd., 2006.
- O. Brüning and al., "LHC Luminosity and Energy Upgrade: a Feasibility Study", LHC Project Report 626, December 2002, Geneva.

<□> < □> < □> < □> 三目目 のQ()