weak-strong beam-beam simulations for different crossing schemes in LHC

parameter	symbol	value
horizontal tune at A=0	Q_x	64.30268
vertical tune at A=0	Q_{y}	59.31268
bunch population	N_b	1.15×10^{11}
beta function at IP	$eta^*_{x,y}$	0.55 m
relativistic gamma	γ	7461
normalized emittance (1s)	\mathcal{E}_{N}	3.75 μm
full crossing angle	θ	285 µrad
no. of IPs	N _{IP}	2
no. of parasitic crossings / IP	N _{par}	30
rms beam size at IP	$\sigma^*_{x,y}$	16.6 µm
rms beam divergence at IP	$\theta^*_{x,y}$	30.2x10 ⁻⁶ µrad

Simulated diffusion rate as a function of start amplitude for XX, XY and YY crossing with LR only and with the combined effect of LR and SR collisions, for the same 0-amplitude tune 0.30268, 0.31268; start amplitudes x=y.

xx, yy, and xy crossing in LHC IPs 1 & 5 w & w/o HO @ different y tunes varied in steps of 0.005 F. Zimmermann, LCE 22.10.04

simulated LHC diffusive aperture for nominal & reduced crossing angle vs. Q_v , x=y

simulated LHC diffusive aperture for nominal & reduced crossing angle vs. Q_y , *y=0* (only x amplitude nonzero), in this case *xx* and *yy* crossing are always stable, and diffusive aperture found only for *xy* crossing

F. Zimmermann, LCE 22.10.04

Qx.

conclusion: diffusive aperture larger for equalplane crossing in all cases

possible explanation:
(1)different 'folding' since xy crossing cancels dodecapole and 20-pole terms;
&
(2) twice the number of resonances for xy crossing