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Abstract

Using weak-strong computer simulations, we study the
improvement of LHC tune footprints and dynamic aper-
ture by electromagnetic lenses,i.e., pulsed wires, which
compensate for the long-range beam-beam interaction. In
particular, we explore the robustness of this compensation
scheme to linear optics imperfections as well as to errors in
wire strength and position.

1 INTRODUCTION

The long-range or parasitic collisions are expected to
limit the dynamic aperture of the LHC [1, 2, 3]. A com-
pensation scheme for the effect of the long-range collisions,
proposed by J.-P. Koutchouk, is presently under investiga-
tion at CERN [4, 5, 6]. The compensation employs an elec-
tric wire on each side of each interaction point (IP). The
wire carries an integrated current of about 80 Ampere me-
ter, and it is placed at a horizontal or vertical distance from
the beam that equals the effective beam-beam separation at
the long-range encounters, about9.5σ at top energy. If the
current is pulsed or ramped at the start of each bunch train
the correction can work even for the so-called PACMAN
bunches [7],i.e., for bunches which do not experience the
full set of long-range encounters, due to gaps in the oppos-
ing beam.

In this report, we report weak-strong simulation results
for the wire compensation scheme. The simulation pro-
gram is the same as described in Ref. [2], except that two
electric wires have been added. Considering two head-on
collisions with alternating crossing and the parasitic colli-
sions around each head-on IP, the simulation yields the tune
footprints and the action diffusion rate at various betatron
amplitudes. Using this simulation, we study the sensitivity
of the wire compensation to various errors, such as to er-
rors in the wire position, the wire strength, or the betatron
phase advance between the wire and the collision point.

Section 2 describes the simulation model in more detail.
Results are presented in Section 3. Conclusions are drawn
in Section 4.

2 MODEL

The simulation study follows John Irwin’s approach for
the SSC [2, 8]. It is a 4-dimensional code, without syn-
chrotron oscillations. However, tune modulation can be in-
cluded as an option.

We consider two IPs, one with horizontal crossing, the
other with vertical. This models the two main IPs in the

Table 1: Parameters.
parameter symbol value
number of particles per bunch Nb 1.1 × 1011

beam energy Eb 7 TeV
rms beam size at IP σ∗

x,y 16µm
rms divergence at IP θ∗

x,y 31.7µrad
IP beta function β∗

x,y 50 cm
full crossing angle θc 300µrad
number of main collision points nIP 2
parasitic collisions per side npar 16
bunch spacing Lsep 7.48 m
beam-beam parameter ξ 0.00342
revolution frequency frev 11.25 kHz

LHC. Simulation parameters are summarized in Table 1.
At the parasitic collision points the beams are separated by
θc/θ∗x,y ≈ 9.5 rms beam sizes. The fractional tunes are
set to the LHC design values of 0.31 and 0.32. The phase
advance between IPs is taken to be exactly half the total
phase advance per turn.

At each IP we apply a series of 3 kicks representing, re-
spectively,

• the lumped effect of long-range collisions and wire
compensation on the incoming side,

• a head-on collision,

• the lumped effect of long-range collisions and wire
compensation on the outgoing side.

2.1 Head-On Collision

The head-on collision with a round Gaussian beam is
parametrized as
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whereσ∗ ≡ σx = σy; r =
√

x2 + y2 is the radial distance
to the origin,rp the classical proton radius,γ the Lorentz
factor, andNb the bunch population. The phase-space co-
ordinatesx, x′, y, andy′ refer to the IP.

2.2 Long-Range Interactions

All parasitic collisions (npar) on one side of the IP are
lumped into a single deflection. Assuming a perfectπ/2



distance in phase advance between head-on and parasitic
collision points, the kick is approximately expressed as a
change in the IP coordinate (while the IP angle stays un-
changed). For the IP with horizontal crossing, the IP coor-
dinates and slopes are changed according to
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where
θt ≡

(
(x′ + θc)2 + y′2)1/2

(5)

andθ∗ ≡ θ∗x = θ∗y is the rms IP beam divergence. At the
LHC, the effective number of parasitic crossings per side
is npar ≈ 16. The expression for the kick is the same on
both sides of the IP. The second IP, with vertical crossing,
is treated analogously.

2.3 Wire Compensation

The new feature of the code is the electric wire. For a
horizontal crossing, the effect of a thin wire is represented
as:
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andlw is the length of the wire,θc,w is the angle at the IP
representing the transverse distance between the beam and
the wire,Iw the wire current, and(Bρ) the magnetic rigid-
ity of the beam. The± signs refer to the two sides of the IP.
Again the vertical crossing is treated in analogy. The errors
φx andφy represent the deviation in phase advance from
the IP with respect to the ideal valueπ/2. Simultanously
they also give the differences in phase advance from the
location of the long-range collisions. At the wire location
presently contemplated, the phase errors are about 2–3◦ in
the design optics [4]. For perfect compensation, the wire
current must be chosen as

Iw = −4π(Bρ)Nbrpnpar/(µ0γlw). (8)

The ideal distance between wire and beam isdw ≈
(θc/θ∗x,y)σ, whereσ denotes the rms beam size at the wire.
This corresponds toθc,w = θc.

Figure 1: Tune footprints for various cases, for initial hori-
zontal and vertical amplitudes extending to 7σx,y. Top left:
head-on collisions only; top right: head-on plus long-range
collisions; bottom left: head-on plus long-range collisions
and a perfect wire; bottom right: head-on plus long-range
collisions and a wire with 20% strength error.

2.4 Compensation Errors

We consider five types of errors, namely,

• a simultaneous symmetric betatron phase error φx,y

on both sides of each IP,

• a static wire strength error,

• a random wire strength error,

• a wire position error,

• a betatron phase error φx,y with only one wire per IP.

Simulation results for each case are discussed next.

3 RESULTS

Figure 1 shows tune footprints computed for initial am-
plitudes extending to 7σx,y. The tunes were calculated by
applying a fast Fourier transform to particle positions sam-
pled over 4096 turns. The top left picture shows the tune
footprint for the two head-on collisions alone, the top right
the enhancement of the footprint by the long-range colli-
sions. The bottom left picture demonstrates that an ideal
wire reduces the footprint to a size equal to or even smaller
than that for head-on collisions only. The compensation
still works even with a significant static strength error, as
illustrated in the last picture.

Diffusion rates are calculated by launching groups of
100 particles at identical start amplitudes in the horizon-
tal and vertical plane, but with random initial betatron
phase. The spread in linear action values is averaged over
1000 consecutive turns to reduce fluctuations due to regular



Figure 2: The diffusion per turn as a function of the start
amplitude. Different cases are compared.

phase deformations, and to more clearly pronounce chaotic
behavior. The mean increase per turn in the action variance
measures the strength of the diffusion.

Figure 2 shows the simulated diffusion rates as a func-
tion of start amplitude. The vertical axis is on a logarith-
mic scale. It represents the increase in the action variance
per turn, in units of the rms design emittance. Any value
larger than 10−8 could indicate a significant diffusion over
108 turns. It is most noteworthy, that at an amplitude of
about 6σ the diffusion rate increases by 7–9 orders of mag-
nitude, if long-range collisions are present (the red curve,
squares). The strong diffusion is absent when only head-on
collisions are accounted for (the blue curve, circles). This
is consistent with the results of Ref. [2]. When the elec-
tric compensating wire is added (green curve, upright trian-
gles), the amplitude of the steep increase moves outwards
by 1.5–2σ, to about 7.5–8σ. This remarkable improvement
confirms the efficiency of the wire. Even with an imperfect
wire (2◦ phase error - the pink curve, inverse triangles), the
diffusion rates in the intermediate amplitude range 6–8σ
is still several orders of magnitude lower than without the
wire. Note that a 2σ improvement of the dynamic aperture,
in both planes, might greatly improve the operating margin
of the LHC.

That the wire compensation fails for amplitudes larger
than 8σ is understandable. At amplitudes above 8σ the par-
ticles start passing through the core of the opposing beam,
where the beam force strongly deviates from the 1/r force
of the wire.

Figure 3 shows a more systematic study of the effect of
a phase error. The same phase error with respect to the
head-on collision point was assumed for the wires on either
side of the IP and in both planes. Results are compared for
three different amplitudes. Since, for phase errors of about
±10◦, the diffusion rate at 7.5σ increases to the uncompen-
sated level, we may consider this value as the phase toler-
ance. In practice, the phase errors are confined to less than
2 ± 1◦ [4], i.e., phase errors due to optical imperfections
will have a negligible effect on the beam-beam compensa-

Figure 3: Variation of diffusion rate with symmetric beta-
tron phase error at various amplitudes. The phase errors
for the wires on either side and for the two planes are all
assumed to be equal.

Figure 4: Variation of diffusion rate with betatron phase
error at various amplitudes, if there is a compensating wire
only on one side of each IP.

tion.
Alternatively, we consider the case that there is only one

wire per IP and study the sensitivity to betatron phase errors
in this configuration. The results are shown in Fig. 4. They
are similar to, or even lower than, those in Fig. 3, despite
of the reduced symmetry. Since it is not possible to choose
a location with a phase error less than 1◦ also here we take
±10◦ as the tolerance. The differences in the diffusion rates
for one and two wires depend on the working point.

If the wire current is not perfect, the compensation de-
grades. This is studied in Fig. 5 (again for two wires per
IP), depicting diffusion rates at 6.5, 7 and 7.5 σ as a func-
tion of the wire strength error in percent. Especially at the
largest amplitude, the dependence is rather erratic, presum-
ably indicating the existence of resonance islands. Static
strength errors in the range between 0 and −10% appear
acceptable.

The effect of a random change in the wire strength from
turn to turn is illustrated in Figs. 6 and 7. The strength of



Figure 5: Variation of diffusion rate with static wire
strength error (in units of percent) at various amplitudes.

each wire is assumed to fluctuate from turn to turn. Plot-
ted along the horizontal axis is the normalized peak value
∆Iw/Iw of the random fluctuation in wire current. The lat-
ter is uniformly distributed between −∆Iw and ∆Iw. Then
the diffusion rates should be symmetric around zero, and
deviations from the mirror symmetry reflect the uncertainty
of the simulation result, due to the choice of random seed.

In the simulation of Fig. 6, we have assumed that the
fluctuation in wire strength does not give rise to dipolar
deflections. This means, that in Eq. (6) all three terms con-
taining the factor θc,w were varied simultaneously. For the
corresponding results in Fig. 7, only the average dipole de-
flection, i.e., not including the fluctuating part, was sub-
tracted from the wire force. In this case, the beam expe-
riences random dipole kicks in addition to fluctuating fo-
cusing forces, and higher order terms. Since no fast orbit
feedback is foreseen for the LHC at top energy the second
simulation is more realistic. The difference in the com-
puted diffusion rates is small, however, which suggests that
the random quadrupolar excitation is more harmful than the
dipolar one. Both figures indicate that the tolerance on the
turn-to-turn stability of the wire is less than 0.1%.

Finally, Fig. 8 shows simulated diffusion rates as a func-
tion of an error in the transverse distance between beam
and wire. We observe that errors in the wire position to-
wards larger amplitudes are preferred, presumably because
the 1/r field increases strongly in the vicinity of the thin
wire. Note that the sharp increase in the diffusion rates for
smaller distances is consistent with the steep rise at an am-
plitude of 7.5σ, in Fig. 2, and that the preservation of a low
diffusion rate for distances 10–20% larger than nominal is
compatible with the dependence on the static strength error
in Fig. 5. We deduce from Fig. 8 that the tolerable range of
distances extends approximately between 0 and 20% of the
optimum distance.

In LHC operation, the relative distance of beam and wire
can be determined with sufficient precision by detecting the
effect of the wire current on the closed orbit.

Figure 6: Variation of diffusion rate with peak value of
turn-to-turn random wire strength error at various ampli-
tudes. The dipolar deflection by the wire is subtracted in-
cluding its fluctuation.
.

Figure 7: Variation of diffusion rate with random wire
strength error at various amplitudes. The average dipole
deflection is subtracted.
.

Figure 8: Variation of diffusion rate with wire position er-
ror at various amplitudes. Zero on the horizontal axis refers
to a beam-wire distance of (θc/θ∗x,y)σ ≈ 9.5σ.



4 CONCLUSIONS

Weak-strong simulation studies show that at amplitudes
between 6 and 8σ the wire compensation reduces the dif-
fusion rate by many orders of magnitude. The tolerance to
betatron phase errors is about 10◦. The tolerable range of
static strength errors extends between 0 and −10%. Trans-
verse distance errors between 0 and 20% are acceptable.
The most critical tolerance appears to be that to turn-to-
turn fluctuation of the wire strength. Here a stability better
than 0.1% must be achieved.
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