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Abstract

During a visit to FNAL, on March 1, 2004, we
performed a two-dimensional grid scan - with 1-mm step
size - of the TEL transverse position in the vicinity of the
proton and pbar beams, while three bunches of either
beam were excited by the TEL on every turn.

The measured tune shifts of protons and pbars are
compatible with expectation. The proton Schottky
‘emittance’ is strongly dependent on the TEL position,
possibly due to a coherent interaction between protons
and electrons. The relative position of protons, pbars and
TEL can be determined in three different ways: from the
TEL BPM readings, from the tune variation with TEL
position, and from the loss-rate variation with the TEL
position. The results are consistent at least within 1 or 2
mm, possibly better. Tunes and losses do not necessarily
yield identical values for the beam position. Significant
proton losses occurred when the TEL approached the
proton beam. These | osses decreased with the third power
of the distance. They were the result of a longitudina
shaving, which might be related to a longitudina
interaction of TEL and proton beam and/or to the nonzero
dispersion at the TEL.

MOTIVATION

We attempted to simulate the dynamic effects of the
wire beam-beam compensation using the TEL. To this
end we varied the electron beam positions transversely
with respect to the proton and pbar beams so as to detect
the effects on the proton beams, such as changes in beam
loss, tunes and emittance, etc. At the same time, the two-
dimensional TEL scan provides information on the exact
2-dimensional position of the proton and pbar orbits at the
TEL as well as on the effect of the TEL on the proton
beam, when it is centered on the pbars for TEL beam-
beam compensation.

SEQUENCE OF EVENTS

22:00 We measured Schottky spectra for the last bunch
in each train. Later the gate was switched to the bunches
A5, Al7, A29 and P6, P18, P30. These numbers
correspond to proton-pbar pairs which arrive at the TEL
simultaneoudly (for example, A5 and P30 arrive at the
same time). The TEL power supply was changed in order
to increase the available current by ~15%.

22:20 Without TEL excitation, the TEL horizonta
position was varied in steps of 1 mm over the range +4 /-
7 mm. At some intermediate region around —2.5 mm some
proton losses were observed, possibly correlated with
losses in the abort gap. The vertical proton orbit did not

move. We backed up and repeated the scan, and, the
second time, there were no |osses.

22:45 The same scan without excitation was conducted
in the vertical plane over the range -5 mm, +3 mm. There
were no losses and, thus, the available TEL aperture
appeared sufficiently large for both planes.

22:55 Pbar RF water heater trip. Lost proton rate went
up (why?).

23:00 TEL was set up in 3-pulse per turn mode. The
TEL was first turned on in the abort gap and the electron
current was maximized to about 600 mA. The abort gap
was cleaned by exciting the lens every 7" turn (to remove
gap particles generated by the RF trip). Then it was set
back to every-turn mode and the timing was moved to the
first proton bunch, finaly to the 6™ proton bunch. We
remarked that the pbar tunes shifted, on the 1.7 GHz
Schottky monitor readout. We moved the orbit towards
the protons. The LOSTP signal increased for bunches P4,
P5 and P6, with 6 showing the highest losses. There was
no significant change in the proton-tune position noted,
but the proton signal strength increased strongly. Next we
moved the TEL beam towards the pbars. The pbar tune
moved again. We also recorded some H and V spectra
from the old Schottky monitor. A strong modulation at the
synchrotron frequency was apparent in both spectra,
perhaps indicative of the large chromaticity.

23:30-01:00 We scanned the TEL position around the
pbar beam.on a 1Imm x Imm grid.

01:00 We flew the wires and found little change in
emittances.

01:00-01:40 We scanned the TEL position around the
proton beam on a Imm x 1Imm grid. We recorded the
loss-rate signas BOPLOS[i], BOALOSi], LOSTP,
LOSTPB, DOPHTL, DOAHTL, DOAHTL[i], DOPHTL]i],
etc. There was asignificant increase in the proton loss rate
in theimmediate vicinity of the proton beam.

01:41 We scanned the TEL angle by 10 kG mm at TEL
Position +2.5 mm, +1.5 mm.

We flew the wires again at the end. There was a certain
increase in proton emittance and a more pronounced
decrease in bunch length. This suggests that the TEL
caused alongitudina shaving of the protons.

RESULTS

TEL Set Up

A few TEL parameters are compiled in Table 1 and the
positions of the three beams upstream and downstream of
the TEL in Table 2. We note that there is about 2 m
dispersion at the TEL. The beam positions were measured
before the start of the study with the TEL in nomina
position and timed on the abort gap. The TEL position is



controlled by 6 correctors. T:L1C1, T:L1C2,... where
L1C2 relates to the Y position, L1C4 to the X position.
The correctors are excited in combinations of 2 or 4,
which are called ‘mults’.

Table 1: Some parameters related to the TEL.

Rms transverse size of | 0.66 mm

electron lens

Beta functions at the TEL 100 m (x), 30 m (y)
TEL current 0.6 A

TEL pulse length 12 ps

TEL length 2m

Figure 1 illustrates the timing of the proton and pbar
beams at the TEL, measured when the TEL was tuned to
the abort gap (therefore the TEL signal is not visible
here). Only the last pbar bunch in each train has no near-
synchronous proton bunch at the TEL. For this study the
TEL was now timed on pbar bunchs A5, A17 and A29,
and the accompanying proton bunches whose index is
higher by 1. Figure 2 shows the TEL currents when
operated in this 3-pulse per turn mode.
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Figure 1: Top graph shows a typical proton signal at the
TEL together with that of the nearest pbar bunch. The
separation is about 19.4 ns. The bottom graph illustrates
the distance between the last proton bunch and the last
pbar bunch in thetrain. It is about 376ns, 20 RF buckets.
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Figure 2: Signa from TEL BPM (green), TEL cathode
current (yellow), and collector current (magenta), for 3-
pulse per turn operation, at 23:15:21.
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Figure 3: Proton loss rates plus TEL corrector settings
L1C2 and L1C4 and 1 proton beam position reading (top
picture); several beam position readings (bottom picture),
during aperture scan without TEL electron beam.
Changing TEL correctors by +-3(4) mm did not increase
proton losses. The peak at the end was due to a trip of
pbar RF station 5. Beam orbit in TPOSx changed by not
more than 10 microns.




To ensure that any change in loss rate etc. is due to the
action of the TEL and not due to spurious orbit changes of
protons or pbars, we scanned the TEL orbit correctors
without TEL beam over severa mm. Figure 3 shows that
the loss rate was constant over the full range of the
corrector scan. Residua proton orbit motion was less than
10 um. The steep increase in the loss rate at the end of
this scan was due to the unrelated RF trip. Figure 4
displays the protons and pbar intensities and halo loss
rates recorded after thistrip.

Table 2: Current position readouts for the three beams at
the upstream and downstream ends of the TEL.

upstream downstream

X Y X Y
Protons 5.0 2.4 4.5 3.2
Pbars 0.1 1.0 -1.6 21
Electrons 4.0 2.6 2.6 15
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Figure 4: Proton and pbar intensities and losses after the rf
trip, at 23:11:57.
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Two-Dimensional Scan

Figure 5 illustrates the TEL position scans performed
during this experiment, as reconstructed from the
corrector settings. The cross is the aperture scan without
TEL; the two spirals represent the 2D grid scan around
the pbar and proton beams.
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Figure 5: Corrector excitation pattern during the MD.
Visible are the aperture scan without TEL in pink in the
form of across and the 2-dimensional grid scan with TEL.
Also indicated are the expected nominal positions of TEL,
protons, and pbars, respectively, as (very roughly)
extrapolated from the upstream TEL-BPM readings. The
solenoid field is 35 kG and therefore 35 kGmm
correspond to 1 mm displacement on either axis. L1C2
controls the horizontal electron position, L1C4 the
vertical.

Tune Variation

Figures 6 and 7 show the variation in pbar and proton
tune, respectively, as a function of time, together with the
horizontal and vertical TEL corrector settings. Figure 4 is
the data of Fig. 2 plotted as a contour, and Fig. 5 is again
the same data plotted as a surface. The pbar tune strongly
changes with the position of the TEL. Unexpectedly, a
large tune excursion is found when the TEL is close to the
proton beam. The maximum tune shift of the pbars is
about 0.008. The expected tune shift is estimated from

pQ=— r—pyﬁx(l—ve/c)le

ev,2ra; 2
Assuming an acceleration voltage of 6 kV, the electron
velocity is V, = 0.15¢C, and for 600 mA current and an

rms transverse size of 0, =0.66 mm, the tune shift is

0.005 for a single particle. It could be up to two times
smaller for coherent oscillations of the beam centroid. It is
remarkable that the pbar beam shows the largest tune shift
when the TEL is near the protons. This is probablyu an
indication of coherent proton motion, coupled via the
beam-beam interaction to the pbars.
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Figure 6: Variation in horizontal pbar tune from 1.7-GHz
Schottky monitor in units of 10™ measured on the three
excited bunches A5, A17 and A29 as a function of time,
together with the horizontal and vertical TEL position..

Figures 8 and 9 show contour plots of the pbar and
proton tunes on the two-dimensiona grid. We can infer
approximate positions for the two beams from these
graphs. Figures 10 and 11 are more sophisticated tune
contour plots for the pbars, over two different ranges.
Figure 12 shows the predicted tune shift due to the TEL
for a ‘pencil’ pbar beam. Figure 13 is a finer plot for the
proton tune, after synchronizing the data. Figure 14 is yet
another plot for the pbars, analyzed in a different way.
Figure 15 shows a fina measurement result, aimed at
verifying the functionality of the tune fitter. The bare tune
for both beams was varied and the tune fit exactly tracks
this change for both beams.
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Figure 7: Variation in horizontal proton tune from 1.7-
GHZ Schottky monitor in units of 10° measured on the
three excited bunches P6, P18 and P30 as a function of
time, together with the horizontal and vertical TEL
position changes.
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Figure 8: Contour plot of pbar tune variation as a function
of transverse TEL positions, for pbar bunches A5, P17,
and A29. Pbars could be at |ocation —100, -50?
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Figure 9: Contour plot of proton tune variation as a
function of transverse TEL positions, for proton bunches
P6, P18, and P30. Protons could be at location 150, 50.
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Figure 10: Pbar tune as afunction of TEL position.
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Figure 11: Pbar tune as a function of TEL position over a
wider horizonta range.
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Figure 13: Proton tune as afunction of TEL position.
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settings, computed by a tedious JAVA script.
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Figure 15: Response of 1.7-GHz Schottky tune fitter to a
change in the horizontal base tune for protons and pbars
by —0.002 units.

Schottky “ Emittance”

In addition to the tune per se, the 1.7-GHz Schottky
monitor also provides an ‘emittance’ number, which is
proportional to the total power in the tune spectrum.
Figures 16 and 17 demonstrate the variation of this
emittance as a function of time. The pbar emittance
strongly increases when the TEL is near the proton beam,
suggesting that indeed the large tune shift was due to
coherent motion driven by the protons.
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Figure 16: Variation in horizontal pbar “emittance” from
1.7-GHz Schottky monitor in (uncaibrated) units of 10°
measured on the three excited bunches A5, A17 and A29
as a function of time, together with the horizontal and
vertical TEL position changes.
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Figure 17: Variaion in horizontal proton “emittance”
from 1.7-GHz Schottky monitor in (uncalibrated) units of

| 10° measured on the three excited bunches P6, P18 and

P30 as afunction of time, together with the horizontal and
vertical TEL position changes.

The proton emittance changed throughout the scan. We
can again generate contour plots, which are shown in
Figs. 18 and 19. Both emittances are clearly sensitive to
TEL positions in the vicinity of the protons. The largest
‘instability’ or coherent signals seem to occur when the
TEL is ‘at the edge’ of the proton beam, not when it is
centered on it.
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Figure 18: Contour plot of pbar emittance variation as a
function of transverse TEL positions, for pbar bunches
A5, Al17, and A29. Pbar signd is largest when TEL is
near the proton beam.
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Figure 19: Contour plot of proton emittance variation as a
function of transverse TEL positions, for proton bunches
P6, P18, and P30.

Losses

The proton losses depend on the setting of the TEL
position as illustrated in Fig. 20. When the TEL is
positioned close to the expected location of the proton
beam the proton losses significantly increase. Figures 21
and 22 show contour plots of proton and pbar losses as a
function of TEL position. We can easily estimate the
position of pbars and protons from these plots, assuming
that 1osses are maximum when the TEL position coincides
with the beam position.
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Figure 20: Average loss rate in proton bunches P6, P18
and P30 as a function of time, together with the the TEL
horizontal and vertica position.

Figures 23-26 show further, more sophisticated contour
plots, which even more clearly indicate the positions of
the two beams. Figure 27 shows the pbar loss rate as a
function of the inferred distance between TEL and pbar
orhit, revealing an inverse cubic dependence. This might
be the key result of our experiment.
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Figure 21: Contour plot of proton losses as a function of
transverse TEL positions, for al proton bunches. Proton
beam appearsto be at location 4.5, 1.5 mm.
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Figure 22: Contour plot of pbar losses as a function of
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appearsto be at —2 mm, 0 mm.
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Figure 27: Antiproton loss rate as a function of TEL
distance, exhibiting an inverse cubic dependence.



Bunch Length

The proton bunches were shaved longitudinaly, when
the TEL approached. The shaving of bunches 4, 5 and 6
was evident on the Tevatron SBD display; see Fig. 28.
Figures 29-31 show the time evolution of the bunch
lengths during the MD and the dependence on TEL
position as contour plots (the proton bunch length has a
contour since the beam was shaved progressively while
approaching the proton beam). The bunch lengths in these
figures are average over al bunches. The shaving effect is
more visible, if the length of individua bunches is
considered. These are shown in Figs. 33 and 34 for
protons and antiprotons, respectively. In each picture one
bunch interacts with the TEL, while the other does not.
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Figure 28: Proton intensity, bunch length and transverse
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TEL, e. g., P4, P5, and P6 (the TEL pulse is too long to
excite a single bunch, but in total spans about 3 bunches,
with maximum amplitude at P6), show a decrease in
intensity and a decrease in bunch length.
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Figure 29: Bunch length from BDS Gaussian fit as a
function of time, averaged over al proton and pbar
bunches. The proton beam is shaved longitudinally
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Figure 30: Contour plot of proton bunch length as a
function of transverse TEL positions, for all proton
bunches.
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Figure 31: Contour plot of pbar bunch length as a function
of transverse TEL positions, for al pbar bunches.
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Figure 34 shows the flying wire scan for pbar bunch 5 starting after TEL scan on pbars, 01:03.01.
before the start of the TEL scan. The size is 0.712 mm e sy
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S Emittances

Figures 37 to 40 show contour plots for the four

transverse emittances from the synchrotron-light monitor.
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Figure 37: Contour plot of horizontal proton emittance
from SL monitor as a function of transverse TEL
positions, for al proton bunches.
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Figure 38: Contour plot of vertical proton emittance from
SL monitor as a function of transverse TEL positions, for
all proton bunches.
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Figure 39: Contour plot of horizontal pbar emittance from
SL monitor as a function of transverse TEL positions, for
all pbar bunches.
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Figure 40: Contour plot of vertical pbar emittance from
SL monitor as a function of transverse TEL positions, for
all pbar bunches.



Old Schottky Sgnal

Figures 41-46 show horizontal and vertical Schottky
spectra from the old monitor taken at various times during
the scan across pbars and protons. Clearly visible are a
large number of synchrotron sidebands in both planes.
The spectra strongly change with the TEL position;
compare, e.g., the vertica spectrain Figs. 43 and 44.

a1-MAR-B4 23:33:46

‘ Proton Hor Schottky
[t . .

N , —
| wl'\ |

T

@ -5z

=

N
.57 .S75 .58 .585 .591 .596 .601 .GA6
Horizontal avgs 8

A

n
o
S
n
al
o
n
o
S

Proton Ver Schottky

"

i il
L M\

g
W L}

.5%4 .559 .384 .57 .575 .38 .99 .59 .996 .601 .606
Vertical avys 8

|

Figure 41: Horizontal and vertica spectrum from old
Schottky monitor, with TEL a -1 mm, +2 mm from
starting point.
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Figure 42: Horizontal and vertica spectrum from old
Schottky monitor, with TEL a -6 mm, +2 mm from
starting point.
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Figure 43: Horizonta and vertica spectrum from old
Schottky monitor, with TEL a —7 mm, -1 mm from
starting point.
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Figure 44: Horizonta and vertica spectrum from old
Schottky monitor, with TEL at —2 mm, -2 mm from
starting point.
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Figure 45: Horizontal and vertica spectrum from old

Schottky monitor, with TEL at +4 mm,
starting point.
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Proton and Pbar Position Relative to the TEL

Figure 47 summarizes the TEL scan performed in this
experiment. Beam sizes are aso indicated. Beam
positions are shown as inferred from the sophisticated
contour plots. Positions of the TEL with respect to
protons and pbars as determined from TEL BPMs are
compared with those inferred from the more primitive
contour plots for tunes and losses in Table 2. Table 3 lists
the implied distances between protons and pbars.

Pbar Beam: start point  TEL cleaning  Proton Beam
[

3 BPMs, losses \ u
2_ e :

llq:

Y=L1C4/35, mm

/
L .

4 \

5 4/ -3 -2 4 \5 6 7
from PH tune

10 1 2 3

from AH fune X=L1€2/35, mm
Figure 47: Summary of TEL position scan. Beam sizes
are approximately to scale.

Table 2: Relative transverse position of proton and pbar
beam with respect to the nominal TEL location, as
inferred from upstream (U) and downstream (D) BPMs,
from the tune variation on the two-dimensiona grid scan,
and from the loss-rate variation for the same scan.

X Y

TEL BPM (U+D) 3.3mm 2.05 mm

P BPM (U+D) 4.75 mm 2.8mm

| Pbar BPM (U+D)

-0.75 mm 1.55 mm

Figure 46: Horizontal and vertica spectrum from old

Schottky monitor, with TEL a +5 mm,
starting point.

+2 mm from

A (P-TEL) BPM 1.45mm 0.75 mm

A (Pbar-TEL) BPM -4.05 mm -0.55 mm

A (P-TEL) tune 2.26 mm 1.69 mm

A (Pbar-TEL) tune -4.89 mm -1.2mm

A (P-TEL) LOSTP 2.37 mm 1.76 mm

A (Pbar-TEL) LOSTPB -4.03 mm 0.26 mm

Table 3: Transverse distances between proton and pbar
beams, asinferred from Table 2.

X Y
A (P-Pbar) BPM 5.50 mm 1.30 mm
A (P-Pbar) tune 7.15mm 279 mm
A (P-Pbar) lossrate 6.40 mm 2.02 mm




PRELIMINARY CONCLUSIONS

The measured tune shifts of protons and pbar are
compatible with expectation.

The proton Schottky ‘emittance’ is strongly dependent
on the TEL position, possibly due to a coherent
interaction between protons and el ectrons.

The positions of protons, pbars and TEL were
determined in three different ways: from the TEL BPM
readings, from the tune variation with TEL position, and
from the lossrate variation with TEL position. The
various results are consistent at least within 1 or 2 mm,
possibly better. Tunes and losses do not necessarily give
exactly the same value for the beam position.

Significant proton losses occurred when the TEL
approached the proton beam. These losses decreased with
the third power of the distance. They were the result of a
longitudind shaving, which might be related to a
longitudina interaction of TEL and proton beam and/or to
the nonzero dispersion at the TEL.



